Convex relaxation for solving posynomial programs

Hao Chun Lu*, Han-Lin Li, Chrysanthos E. Gounaris, Christodoulos A. Floudas

*此作品的通信作者

研究成果: Article同行評審

16 引文 斯高帕斯(Scopus)

摘要

Convex underestimation techniques for nonlinear functions are an essential part of global optimization. These techniques usually involve the addition of new variables and constraints. In the case of posynomial functions x 1α1 x2α2 ⋯ x nαn logarithmic transformations (Maranas and Floudas, Comput. Chem. Eng. 21:351-370, 1997) are typically used. This study develops an effective method for finding a tight relaxation of a posynomial function by introducing variables y j and positive parameters β j, for all α j > 0, such that yj =xj-βj. By specifying β j carefully, we can find a tighter underestimation than the current methods.

原文English
頁(從 - 到)147-154
頁數8
期刊Journal of Global Optimization
46
發行號1
DOIs
出版狀態Published - 1月 2010

指紋

深入研究「Convex relaxation for solving posynomial programs」主題。共同形成了獨特的指紋。

引用此