Contribution of the Surface Free Energy Perturbation to Protein-Solvent Interactions

Yoshiko Kita, Tsutomu Arakawa, Tiao-Yin Lin, Serge N. Timasheff*

*此作品的通信作者

研究成果: Article同行評審

261 引文 斯高帕斯(Scopus)

摘要

Surface tension measurements were carried out at 20 °C by a capillary drop—weight method on aqueous solutions of sodium glutamate (NaGlu), lysine hydrochloride (LysHCl), potassium aspartate (KAsp), arginine hydrochloride (ArgHCl), lysylglutamate (LysGlu), argininylglutamate (ArgGlu), guanidinium sulfate, trehalose, trimethylamine ¿V-oxide (TMAO), dimethyl sulfoxide, 2-methyl-2,4-pentanediol (hexylene glycol), and polyethylene glycol)s of molecular weights 200, 400, 600, and 1000. All of the salts and the sugar increased the surface tension of water, while the last four compounds decreased it, with 2-methyl-2,4-pentanediol lowering it most effectively and TMAO being the least effective. The preferential hydration of bovine serum albumin (BSA) and lysozyme was measured in KAsp, ArgHCl, LysGlu, and ArgGlu. The high values of preferential hydration found in all cases, except for BSA in ArgHCl, suggest that they should stabilize protein structure, as had been found for lysine hydrochloride and monosodium glutamate [Arakawa, T., & Timasheff, S. N. (1984) J. Biol. Chem. 259, 4979–4986], A correlation was found for both BSA and lysozyme in KAsp, NaGlu, LysHCl, ArgGlu, and LysGlu between the surface tension effect and the observed preferential interactions, indicating that the change in the surface free energy of the protein-containing cavity due to the surface tension increase for water by these amino acid salts contributes dominantly to the observed increase in the chemical potential of the protein by their addition. The lack of a correlation observed for BSA, but not lysozyme, in ArgHCl at low concentrations where preferential binding is close to zero suggests, however, that the surface tension effect is not the sole factor involved in the protein—solvent interactions in these amino acid salts. Binding of ArgHCl to BSA, probably through hydrogen bonds between the Arg guanidinium group and peptide bonds, was proposed to occur, the affinity of Arg+ being reduced by electrostatic repulsion when proteins carry a net positive charge, such as is the case with lysozyme. Since the four organic solvent additives also lead to protein preferential hydration, no correlation exists between their preferential interactions and the surface free energy perturbation. Therefore, in their case, the preferential hydration must be ascribed to other factors that overcome the preferential binding expected from the Gibbs adsorption isotherm. The surface tension results, however, are consistent with the binding of the organic solvents to proteins through hydrophobic interactions, explaining, at least in part, the observed concentration dependence of the interactions.

原文English
頁(從 - 到)15178-15189
頁數12
期刊Biochemistry
33
發行號50
DOIs
出版狀態Published - 1 十二月 1994

指紋

深入研究「Contribution of the Surface Free Energy Perturbation to Protein-Solvent Interactions」主題。共同形成了獨特的指紋。

引用此