TY - GEN
T1 - Continuous-Time Attention for Sequential Learning
AU - Chien, Jen Tzung
AU - Chen, Yi Hsiang
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - Attention mechanism is crucial for sequential learning where a wide range of applications have been successfully developed. This mechanism is basically trained to spotlight on the region of interest in hidden states of sequence data. Most of the attention methods compute the attention score through relating between a query and a sequence where the discrete-time state trajectory is represented. Such a discrete-time attention could not directly attend the continuous-time trajectory which is represented via neural differential equation (NDE) combined with recurrent neural network. This paper presents a new continuous-time attention method for sequential learning which is tightly integrated with NDE to construct an attentive continuous-time state machine. The continuous-time attention is performed at all times over the hidden states for different kinds of irregular time signals. The missing information in sequence data due to sampling loss, especially in presence of long sequence, can be seamlessly compensated and attended in learning representation. The experiments on irregular sequence samples from human activities, dialogue sentences and medical features show the merits of the proposed continuous-time attention for activity recognition, sentiment classification and mortality prediction, respectively.
AB - Attention mechanism is crucial for sequential learning where a wide range of applications have been successfully developed. This mechanism is basically trained to spotlight on the region of interest in hidden states of sequence data. Most of the attention methods compute the attention score through relating between a query and a sequence where the discrete-time state trajectory is represented. Such a discrete-time attention could not directly attend the continuous-time trajectory which is represented via neural differential equation (NDE) combined with recurrent neural network. This paper presents a new continuous-time attention method for sequential learning which is tightly integrated with NDE to construct an attentive continuous-time state machine. The continuous-time attention is performed at all times over the hidden states for different kinds of irregular time signals. The missing information in sequence data due to sampling loss, especially in presence of long sequence, can be seamlessly compensated and attended in learning representation. The experiments on irregular sequence samples from human activities, dialogue sentences and medical features show the merits of the proposed continuous-time attention for activity recognition, sentiment classification and mortality prediction, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85114859753&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85114859753
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 7116
EP - 7124
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -