Constructions for optical orthogonal codes, distinct difference sets and synchronous optical orthogonal codes

Oscar Moreno*, P. Vijay Kumar, Francis Lu, Reza Omrani

*此作品的通信作者

研究成果: Conference article同行評審

4 引文 斯高帕斯(Scopus)

摘要

An (n, ω, λ)-optical orthogonal code (OOC) is a family of {0,1}-sequences of length n and Hamming weight ω. As such, a new optimal construction of OOCs by generalizing the well-known Bose (q2-1,q,1)-distinct difference set construction, where q is a prime power is presentd. It is shown that the concept of an OOC with λ=1 coincides with that of Distinct Difference Sets (DDS) and that such OOCs can be used to construct Difference Triangle Sets.

原文English
頁(從 - 到)327
頁數1
期刊IEEE International Symposium on Information Theory - Proceedings
DOIs
出版狀態Published - 2003
事件Proceedings 2003 IEEE International Symposium on Information Theory (ISIT) - Yokohama, Japan
持續時間: 29 6月 20034 7月 2003

指紋

深入研究「Constructions for optical orthogonal codes, distinct difference sets and synchronous optical orthogonal codes」主題。共同形成了獨特的指紋。

引用此