Computing the Ball Size of Frequency Permutations under Chebyshev Distance

Min-Zheng Shieh*, Shi-Chun Tsai

*此作品的通信作者

研究成果: Conference contribution同行評審

6 引文 斯高帕斯(Scopus)

摘要

Let Sλn be the set of all permutations over the multiset {1,⋯,1,λ ⋯,m,⋯,m λ} where n = mλ. A frequency permutation array (FPA) of minimum distance d is a subset of Sλn in which every two elements have distance at least d. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert-Varshamov bound and the sphere-packing bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Both methods extend previous known results. The first one runs in O ((2dλ dλ)2.376log n) time and O ((2dλ dλ)2) space. The second one runs in O ((2dλ dλ) (dλ+λ λ)n/λ) time and O ((2dλ dλ)) space. For small constants λ and d, both are efficient in time and use constant storage space.

原文English
主出版物標題2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
頁面2100-2104
頁數5
DOIs
出版狀態Published - 2011
事件2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011 - St. Petersburg, Russian Federation
持續時間: 31 7月 20115 8月 2011

出版系列

名字IEEE International Symposium on Information Theory - Proceedings
ISSN(列印)2157-8104

Conference

Conference2011 IEEE International Symposium on Information Theory Proceedings, ISIT 2011
國家/地區Russian Federation
城市St. Petersburg
期間31/07/115/08/11

指紋

深入研究「Computing the Ball Size of Frequency Permutations under Chebyshev Distance」主題。共同形成了獨特的指紋。

引用此