TY - JOUR
T1 - Computer-Aided Diagnosis of Soft-Tissue Tumors Using Sonographic Morphologic and Texture Features
AU - Chen, Chih Yen
AU - Chiou, Hong Jen
AU - Chou, Szu Yuan
AU - Chiou, See Ying
AU - Wang, Hsin Kai
AU - Chou, Yi Hong
AU - Chiang, Huihua Kenny
PY - 2009/12
Y1 - 2009/12
N2 - Rationale and Objectives: The aim of this study was to develop a computer-aided diagnosis (CAD) system in assessing the sonographic morphologic and texture features of soft-tissue tumors. Materials and Methods: The retrospective study involved 114 pathology proven cases including 73 benign and 41 malignant soft-tissue tumors. The tumor regions were delineated by an experienced radiologist who was unknown to the pathologic result. Then, we applied 10 morphologic features and 6 gray-level co-occurrence matrix texture features to analyze the tumor regions. To classify the tumors as benign or malignant, we used two methods, a linear discriminant analysis with stepwise feature selection and a multilayer neural network with the back-propagation algorithm as classifiers. The classification performances are evaluated by the area Az under the receiver operating characteristic. Furthermore, four radiologists provided malignancy grades for all tumors in the comparison of the CAD system. Results: In this analysis, the CAD system based on the combination of morphologic and texture feature sets can give the optimal CAD result by LDA with an accuracy of 89.5%, a sensitivity of 90.2%, a specificity of 89.0%, a positive predictive value (PPV) of 82.2%, negative predictive value (NPV) of 94.2%, and Az value of 0.96, and by the multilayer perception with an accuracy of 88.6%, a sensitivity of 90.2%, a specificity of 87.5%, a positive predictive value of 80.4%, negative predictive value of 94.2%, and Az value of 0.95. The Az values of the four radiologists were ranged between 0.74 and 0.86, and the optimal CAD results were shown the highest Az values than the four radiologists' rankings. Conclusions: This study has shown that performing the CAD system with both morphologic and texture features on sonography, can successfully distinguish between benign and malignant soft-tissue tumors. Moreover, it can also provide a second opinion for the tumor diagnosis and avert unnecessary biopsy.
AB - Rationale and Objectives: The aim of this study was to develop a computer-aided diagnosis (CAD) system in assessing the sonographic morphologic and texture features of soft-tissue tumors. Materials and Methods: The retrospective study involved 114 pathology proven cases including 73 benign and 41 malignant soft-tissue tumors. The tumor regions were delineated by an experienced radiologist who was unknown to the pathologic result. Then, we applied 10 morphologic features and 6 gray-level co-occurrence matrix texture features to analyze the tumor regions. To classify the tumors as benign or malignant, we used two methods, a linear discriminant analysis with stepwise feature selection and a multilayer neural network with the back-propagation algorithm as classifiers. The classification performances are evaluated by the area Az under the receiver operating characteristic. Furthermore, four radiologists provided malignancy grades for all tumors in the comparison of the CAD system. Results: In this analysis, the CAD system based on the combination of morphologic and texture feature sets can give the optimal CAD result by LDA with an accuracy of 89.5%, a sensitivity of 90.2%, a specificity of 89.0%, a positive predictive value (PPV) of 82.2%, negative predictive value (NPV) of 94.2%, and Az value of 0.96, and by the multilayer perception with an accuracy of 88.6%, a sensitivity of 90.2%, a specificity of 87.5%, a positive predictive value of 80.4%, negative predictive value of 94.2%, and Az value of 0.95. The Az values of the four radiologists were ranged between 0.74 and 0.86, and the optimal CAD results were shown the highest Az values than the four radiologists' rankings. Conclusions: This study has shown that performing the CAD system with both morphologic and texture features on sonography, can successfully distinguish between benign and malignant soft-tissue tumors. Moreover, it can also provide a second opinion for the tumor diagnosis and avert unnecessary biopsy.
KW - computer-aided diagnosis (CAD)
KW - linear discriminant analysis (LDA)
KW - morphologic feature
KW - multilayer perception (MLP)
KW - soft-tissue tumors
KW - texture feature
UR - http://www.scopus.com/inward/record.url?scp=70350464946&partnerID=8YFLogxK
U2 - 10.1016/j.acra.2009.07.024
DO - 10.1016/j.acra.2009.07.024
M3 - Article
C2 - 19896070
AN - SCOPUS:70350464946
SN - 1076-6332
VL - 16
SP - 1531
EP - 1538
JO - Academic Radiology
JF - Academic Radiology
IS - 12
ER -