TY - JOUR
T1 - Computational study on kinetics and mechanisms of unimolecular decomposition of succinic acid and its anhydride
AU - Chen, Hsin Tsung
AU - Chang, Jee Gong
AU - Musaev, Djamaladdin G.
AU - Lin, Ming-Chang
PY - 2008/7/24
Y1 - 2008/7/24
N2 - The mechanisms and kinetics of unimolecular decomposition of succinic acid and its anhydride have been studied at the G2M(CC2) and microcanonical RRKM levels of theory. It was shown that the ZsgsZ conformer of succinic acid, with the Z-acid form and the gauche conformation around the central C-C bond, is its most stable conformer, whereas the lowest energy conformer with the E-acid form, ECGsZ, is only 3.1 kcal/mol higher in energy than the ZsgsZ. Three primary decomposition channels of succinic acid producing H2O + succinic anhydride with a barrier of 51.0 kcal/mol, H2O + OCC 2H3COOH with a barrier of 75.7 kcal/mol and CO2 + C2H5COOH with a barrier of 71.9 kcal/mol were predicted. The dehydration process starting from the ECGCZ-conformer is found to be dominant, whereas the decarboxylation reaction starting from the ZsgsZ-conformer is only slightly less favorable. It was shown that the decomposition of succinic anhydride occurs via a concerted fragmentation mechanism (with a 69.6 kcal/mol barrier), leading to formation of CO + CO 2 + C2H4 products. On the basis of the calculated potential energy surfaces of these reactions, the rate constants for unimolecular decomposition of succinic acid and its anhydride were predicted. In addition, the predicted rate constants for the unimolecular decomposition of C2H5COOH by decarboxylation (giving C2H 6 + CO2) and dehydration (giving H3CCHCO + H2O) are in good agreement with available experimental data.
AB - The mechanisms and kinetics of unimolecular decomposition of succinic acid and its anhydride have been studied at the G2M(CC2) and microcanonical RRKM levels of theory. It was shown that the ZsgsZ conformer of succinic acid, with the Z-acid form and the gauche conformation around the central C-C bond, is its most stable conformer, whereas the lowest energy conformer with the E-acid form, ECGsZ, is only 3.1 kcal/mol higher in energy than the ZsgsZ. Three primary decomposition channels of succinic acid producing H2O + succinic anhydride with a barrier of 51.0 kcal/mol, H2O + OCC 2H3COOH with a barrier of 75.7 kcal/mol and CO2 + C2H5COOH with a barrier of 71.9 kcal/mol were predicted. The dehydration process starting from the ECGCZ-conformer is found to be dominant, whereas the decarboxylation reaction starting from the ZsgsZ-conformer is only slightly less favorable. It was shown that the decomposition of succinic anhydride occurs via a concerted fragmentation mechanism (with a 69.6 kcal/mol barrier), leading to formation of CO + CO 2 + C2H4 products. On the basis of the calculated potential energy surfaces of these reactions, the rate constants for unimolecular decomposition of succinic acid and its anhydride were predicted. In addition, the predicted rate constants for the unimolecular decomposition of C2H5COOH by decarboxylation (giving C2H 6 + CO2) and dehydration (giving H3CCHCO + H2O) are in good agreement with available experimental data.
UR - http://www.scopus.com/inward/record.url?scp=49149100293&partnerID=8YFLogxK
U2 - 10.1021/jp8019733
DO - 10.1021/jp8019733
M3 - Article
C2 - 18582025
AN - SCOPUS:49149100293
SN - 1089-5639
VL - 112
SP - 6621
EP - 6629
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 29
ER -