摘要
In this Letter, we propose and experimentally demonstrate a novel, to the best of our knowledge, sparse deep neural network-based nonlinear equalizer (SDNN-NLE). By identifying only the significant weight coefficients, our approach remarkably reduces the computational complexity, while still upholding the desired transmission accuracy. The insignificant weights are pruned in two phases: identifying the significance of each weight by pre-training the fully connected DNN-NLE with an adaptive L2-regularization and then pruning those insignificant ones away with a pre-defined sparsity. An experimental demonstration is conducted on a 112 Gbps PAM4 link over 40 km standard single-mode fiber with a 25 GHz externally modulated laser in O-band. Our experimental results illustrate that, for the 112 Gbps PAM4 signal at a received optical power of −5 dBm over 40 km, the proposed SDNN-NLE exhibits promising solutions to effectively mitigate nonlinear distortions and outperforms a conventional fully connected Volterra equalizer (VE), conventional fully connected DNN-NLE, and sparse VE by providing 71%, 63%, and 41% complexity reduction, respectively, without degrading the system performance.
原文 | English |
---|---|
頁(從 - 到) | 1999-2002 |
頁數 | 4 |
期刊 | Optics Letters |
卷 | 46 |
發行號 | 9 |
DOIs | |
出版狀態 | Published - 1 5月 2021 |