Collective Oscillations in Coupled-Cell Systems

Kuan Wei Chen, Chih Wen Shih*

*此作品的通信作者

研究成果: Article同行評審

摘要

We investigate oscillations in coupled systems. The methodology is based on the Hopf bifurcation theorem and a condition extended from the Routh–Hurwitz criterion. Such a condition leads to locating the bifurcation values of the parameters. With such an approach, we analyze a single-cell system modeling the minimal genetic negative feedback loop and the coupled-cell system composed by these single-cell systems. We study the oscillatory properties for these systems and compare these properties between the model with Hill-type repression and the one with protein-sequestration-based repression. As the parameters move from the Hopf bifurcation value for single cells to the one for coupled cells, we compute the eigenvalues of the linearized systems to obtain the magnitude of the collective frequency when the periodic solution of the coupled-cell system is generated. Extending from this information on the parameter values, we further compute and compare the collective frequency for the coupled-cell system and the average frequency of the decoupled individual cells. To compare these scenarios with other biological oscillators, we perform parallel analysis and computations on a segmentation clock model.

原文English
文章編號62
期刊Bulletin of Mathematical Biology
83
發行號6
DOIs
出版狀態Published - 六月 2021

指紋

深入研究「Collective Oscillations in Coupled-Cell Systems」主題。共同形成了獨特的指紋。

引用此