CNN-Based Stochastic Regression for IDDQ Outlier Identification

Chia Heng Yen*, Chun Teng Chen, Cheng Yen Wen, Ying Yen Chen, Jih Nung Lee, Shu Yi Kao, Kai Chiang Wu, Mango Chia Tso Chao


研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)


To reduce defect parts per million (DPPM) on IC products, IDDQ testing can be exploited for identifying the outliers which are potentially defective but not detected by sign-off functional and parametric tests. Conventional IDDQ testing paradigms depending on a simple statistical 6σ rule or engineers' experience are usually too conservative to effectively identify nontrivial outliers, especially, when spatial correlations are of great concern/influence. In article, an improved convolutional neural network (CNN)-based method can be proposed for IDDQ outlier identification. In the proposed method, the mean and the standard deviation on the IDDQ value inside a die under test (DUT) can be predicted by employing a stochastic regression model. According to the predicted mean and standard deviation, we derive an expected IDDQ interval and identify the DUT as an outlier if its actual measured IDDQ value is beyond the expected interval. From the observation of the experimental results, the improved data preprocessing and the improved CNN-based stochastic regression can be contained to enhance the prediction accuracy of the expected IDDQ intervals. In the improved method, the spatial correlations of the neighboring dice inside a window can be considered by training a CNN-based stochastic regression model with a large volume of industrial data on 28 and 65 nm products. The trained model is highly accurate prediction in the R^2 (0.973) and RMSE (0.626 mA) of the expected IDDQ values on 28 nm product and the R^2 (0.942) and RMSE (2.155 uA) of the expected IDDQ values on 65 nm product. Furthermore, the experimental results show that the trained model can capture the potential defective dice by identifying efficient IDDQ outliers.

頁(從 - 到)4282-4295
期刊IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
出版狀態Published - 1 11月 2023


深入研究「CNN-Based Stochastic Regression for IDDQ Outlier Identification」主題。共同形成了獨特的指紋。