TY - GEN
T1 - CNN-based Prediction of Network Robustness With Missing Edges
AU - Wu, Chengpei
AU - Lou, Yang
AU - Wu, Ruizi
AU - Liu, Wenwen
AU - Li, Junli
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Connectivity and controllability of a complex network are two important issues that guarantee a networked system to function. Robustness of connectivity and controllability guarantees the system to function properly and stably under various malicious attacks. Evaluating network robustness using attack simulations is time consuming, while the convolutional neural network (CNN)-based prediction approach provides a cost-efficient method to approximate the network robustness. In this paper, we investigate the performance of CNN-based approaches for connectivity and controllability robustness prediction, when partial network information is missing, namely the adjacency matrix is incomplete. Extensive experimental studies are carried out. A threshold is explored that if a total amount of more than 7.29% information is lost, the performance of CNN-based prediction will be significantly degenerated for all cases in the experiments. Two scenarios of missing edge representations are compared, 1) a missing edge is marked 'no edge' in the input for prediction, and 2) a missing edge is denoted using a special marker of 'unknown'. Experimental results reveal that the first representation is misleading to the CNN-based predictors.
AB - Connectivity and controllability of a complex network are two important issues that guarantee a networked system to function. Robustness of connectivity and controllability guarantees the system to function properly and stably under various malicious attacks. Evaluating network robustness using attack simulations is time consuming, while the convolutional neural network (CNN)-based prediction approach provides a cost-efficient method to approximate the network robustness. In this paper, we investigate the performance of CNN-based approaches for connectivity and controllability robustness prediction, when partial network information is missing, namely the adjacency matrix is incomplete. Extensive experimental studies are carried out. A threshold is explored that if a total amount of more than 7.29% information is lost, the performance of CNN-based prediction will be significantly degenerated for all cases in the experiments. Two scenarios of missing edge representations are compared, 1) a missing edge is marked 'no edge' in the input for prediction, and 2) a missing edge is denoted using a special marker of 'unknown'. Experimental results reveal that the first representation is misleading to the CNN-based predictors.
KW - Complex network
KW - convolutional neural network
KW - missing edge
KW - prediction
KW - robustness
UR - http://www.scopus.com/inward/record.url?scp=85140741382&partnerID=8YFLogxK
U2 - 10.1109/IJCNN55064.2022.9892188
DO - 10.1109/IJCNN55064.2022.9892188
M3 - Conference contribution
AN - SCOPUS:85140741382
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2022 International Joint Conference on Neural Networks, IJCNN 2022
Y2 - 18 July 2022 through 23 July 2022
ER -