跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
CMAF: Cross-Modal Augmentation via Fusion for Underwater Acoustic Image Recognition
Shih Wei Yang
*
, Li Hsiang Shen,
Hong Han Shuai
*
,
Kai Ten Feng
*
*
此作品的通信作者
電機工程學系
電信工程研究所
研究成果
:
Article
›
同行評審
2
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「CMAF: Cross-Modal Augmentation via Fusion for Underwater Acoustic Image Recognition」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Image Recognition
100%
Cross-modal
100%
Underwater Image
100%
Image Classification Model
66%
Visual Modality
66%
Source Code
33%
State-of-the-art Techniques
33%
Local Features
33%
Detection Application
33%
Two-branch
33%
Class Imbalance Problem
33%
Mask Based
33%
Acoustics
33%
Terrestrial Data
33%
Signal Modality
33%
Attention Fusion
33%
Fusion Framework
33%
Fusion Module
33%
Focal Loss
33%
Training Strategy
33%
Fish Classification
33%
Underwater Image Classification
33%
Sonar Signal
33%
Noisy Features
33%
Terrestrial Environment
33%
Character Feature
33%
Fish Image Classification
33%
Underwater Detection
33%
Computer Science
Image Classification
100%
Classification Models
66%
Visual Modality
66%
Collected Data
33%
local feature
33%
Class Imbalance Problem
33%
Application Detection
33%
Engineering
Image Recognition
100%
Image Classification
100%
Acoustic Image
100%
Collected Data
33%
State-of-the-Art Method
33%
Earth and Planetary Sciences
Image Classification
100%
Underwater Acoustics
100%
State of the Art
33%
Terrestrial Environment
33%