Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations

Chien Pin Chou*, Henryk A. Witek

*此作品的通信作者

研究成果: Article同行評審

31 引文 斯高帕斯(Scopus)

摘要

We show that the Zhang-Zhang (ZZ) polynomial of a benzenoid obtained by fusing a parallelogram M(m,n) with an arbitrary benzenoid structure ABC can be simply computed as a product of the ZZ polynomials of both fragments. It seems possible to extend this important result also to cases where both fused structures are arbitrary Kekuléan benzenoids. Formal proofs of explicit forms of the ZZ polynomials for prolate rectangles Pr(m,n) and generalized prolate rectangles Pr([m1,m2,⋯, mn],n) follow as a straightforward application of the general theory, giving ZZ(Pr(m,n),x)=(1+(1+x)·m)n and ZZ(Pr([m1,m2,⋯, mn],n),x)=π;k=1 n(1+(1+x )· mk).

原文American English
頁(從 - 到)101-108
頁數8
期刊Discrete Applied Mathematics
198
DOIs
出版狀態Published - 10 1月 2016

指紋

深入研究「Closed-form formulas for the Zhang-Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations」主題。共同形成了獨特的指紋。

引用此