Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers

Lung Hao Lee, Man Chen Hung, Chien Huan Lu, Chang Hao Chen, Po Lei Lee, Kuo Kai Shyu

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the median score of 0.925. For Task 5, our best of 0.75 exceeded the median score of 0.745.

原文English
主出版物標題Social Media Mining for Health, SMM4H 2021 - Proceedings of the 6th Workshop and Shared Tasks
編輯Arjun Magge, Ari Z. Klein, Antonio Miranda-Escalada, Mohammed Ali Al-garadi, Ilseyar Alimova, Zulfat Miftahutdinov, Eulalia Farre-Maduell, Salvador Lima Lopez, Ivan Flores, Karen O'Connor, Davy Weissenbacher, Elena Tutubalina, Abeed Sarker, Juan M Banda, Martin Krallinger, Graciela Gonzalez-Hernandez
發行者Association for Computational Linguistics (ACL)
頁面98-101
頁數4
ISBN(電子)9781954085312
DOIs
出版狀態Published - 2021
事件6th Workshop and Shared Tasks on Social Media Mining for Health, SMM4H 2021 - Mexico City, 墨西哥
持續時間: 10 6月 2021 → …

出版系列

名字Social Media Mining for Health, SMM4H 2021 - Proceedings of the 6th Workshop and Shared Tasks

Conference

Conference6th Workshop and Shared Tasks on Social Media Mining for Health, SMM4H 2021
國家/地區墨西哥
城市Mexico City
期間10/06/21 → …

指紋

深入研究「Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers」主題。共同形成了獨特的指紋。

引用此