Classical Distance-Regular Graphs of Negative Type

Chih-wen Weng*

*此作品的通信作者

研究成果: Article同行評審

29 引文 斯高帕斯(Scopus)

摘要

We prove the following theorem. \emsp;Theorem.Let Γ=(X, R)denote a distance-regular graph with classical parameters(d, b, α, β)and d≥4.Suppose b<-1,and suppose the intersection numbers a1≠0,c2>1.Then precisely one of the following(i)-(iii)holds. (i)Γ is the dual polar graph2A2d-1(-b). (ii)Γ is the Hermitian forms graph Her-b(d). (iii)α=(b-1)/2,β=-(1+bd)/2,and-b is a power of an odd prime.

原文English
頁(從 - 到)93-116
頁數24
期刊Journal of Combinatorial Theory. Series B
76
發行號1
DOIs
出版狀態Published - 5月 1999

指紋

深入研究「Classical Distance-Regular Graphs of Negative Type」主題。共同形成了獨特的指紋。

引用此