Chinese grammatical error detection using a CNN-LSTM model

Lung Hao Lee, Bo Lin Lin, Liang Chih Yu, Yuen Hsien Tseng

研究成果: Conference contribution同行評審

7 引文 斯高帕斯(Scopus)

摘要

In this paper, we proposed a Convolution Neural Network with Long Short-Term Memory (CNN-LSTM) model for Chinese grammatical error detection. The TOCFL learner corpus is adopted to measure the system performance of indicating whether a sentence contains errors or not. Our model performs better than other neural network based methods in terms of accuracy for identifying an erroneous sentence written by Chinese language learners.

原文English
主出版物標題Proceedings of the 25th International Conference on Computers in Education, ICCE 2017 - Main Conference Proceedings
編輯Ahmad Fauzi Mohd Ayub, Antonija Mitrovic, Jie-Chi Yang, Su Luan Wong, Wenli Chen
發行者Asia-Pacific Society for Computers in Education
頁面919-921
頁數3
ISBN(列印)9789869401265
出版狀態Published - 2017
事件25th International Conference on Computers in Education, ICCE 2017 - Christchurch, 新西蘭
持續時間: 4 12月 20178 12月 2017

出版系列

名字Proceedings of the 25th International Conference on Computers in Education, ICCE 2017 - Main Conference Proceedings

Conference

Conference25th International Conference on Computers in Education, ICCE 2017
國家/地區新西蘭
城市Christchurch
期間4/12/178/12/17

指紋

深入研究「Chinese grammatical error detection using a CNN-LSTM model」主題。共同形成了獨特的指紋。

引用此