Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics

Jia-Lin Tsai*, Shi Hua Tzeng, Yu Jen Tzou


研究成果: Article同行評審

66 引文 斯高帕斯(Scopus)


The fracture behavior of a graphene sheet, containing a center crack (length of 2 a) was characterized based on the atomistic simulation and the concept of continuum mechanics. Two failure modes, i.e., opening mode (Mode I) and sliding mode (Mode II), were considered by applying remote tensile and shear loading, respectively, on the graphene sheet. In the atomistic simulation, the equilibrium configurations of the cracked graphene subjected to applied loadings, before and after the crack extension of 2 Δ a, were determined through molecular dynamics (MD) simulation, from which the variation of the potential energy and the strain energy release rate of the discrete graphene sheet because of crack extension was calculated accordingly. It is noted that because of the discrete attribute, there is no stress singularity near the crack tip, and thus, the concept of stress intensity factor that is generally employed in the continuum mechanics may not be suitable for modeling the crack behavior in the atomistic structures. For the sake of comparison, the continuum finite element model with the same geometric parameters and material properties as the atomistic graphene sheet was constructed, and the corresponding strain energy release rate was calculated from the crack closure method. Results indicated that the strain energy release rates obtained from the continuum model exhibit good agreement with those derived from discrete atomistic model. Therefore, it is suggested that the strain energy release rate is an appropriate parameter, which can be employed in the atomistic model and the continuum model for describing the fracture of covalently bonded graphene sheet.

頁(從 - 到)503-509
期刊International Journal of Solids and Structures
出版狀態Published - 1 2月 2010


深入研究「Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics」主題。共同形成了獨特的指紋。