CASML: Combining Cross-Scale Attention and Separate Mix-Layer for Lightweight Classification Network

Po Yu Liao, Yu Min Zhang, Jun Wei Hsieh, Chun Chieh Lee, Kuo Chin Fan

研究成果: Conference contribution同行評審

摘要

We propose a Separate Cross-Layer Module to achieve a lightweight method by splitting the network and a Cross- Scale Attention Module to enhance feature representation by extracting cross-scale features. By combining these two modules, we introduce CASML backbone for classification tasks. Through experiments, we demonstrate that we can reduce the computational costs by 25% and improve classification accuracy by 1.8% on the CIFAR100 dataset. These modules can be incorporated into other classification networks to achieve similar performance, demonstrating high versatility.

原文English
主出版物標題2024 33rd Wireless and Optical Communications Conference, WOCC 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面186-191
頁數6
ISBN(電子)9798331539658
DOIs
出版狀態Published - 2024
事件33rd Wireless and Optical Communications Conference, WOCC 2024 - Hsinchu, 台灣
持續時間: 25 10月 202426 10月 2024

出版系列

名字2024 33rd Wireless and Optical Communications Conference, WOCC 2024

Conference

Conference33rd Wireless and Optical Communications Conference, WOCC 2024
國家/地區台灣
城市Hsinchu
期間25/10/2426/10/24

指紋

深入研究「CASML: Combining Cross-Scale Attention and Separate Mix-Layer for Lightweight Classification Network」主題。共同形成了獨特的指紋。

引用此