Carbon-doped TiO2 nanotubes: Experimental and computational studies

Wen Fei Huang, Pin Jiun Wu, Wei Chih Hsu, Chih Wei Wu, K. S. Liang, Ming-Chang Lin*


研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)


C-doped TiO2 nanotubes (NTs) with anatase structure, prepared by anodizing the polished Ti foils, were characterized using X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and synchrotron-based X-ray photoemission spectroscopy (XPS). XPS results show electron losses in C atoms, no electron change in Ti atoms, and two doping energy levels appeared in band gaps. Structural geometries, DOSs, PDOSs, and Bader charge analyses of C-doped TiO2 anatase are predicted by periodic DFT calculations. Eight doping positions were taken into consideration: two substitutional cases (in oxygen and titanium sites) and six interstitial cases. We found that the interstitial carbon doping type is the most stable one, whereas the substitutional cases are rather unstable. Band-gap modifications can also be found in oxygen substitution, but not in titanium substitution. Both band-gap modification and non-band-gap modification are found in the interstitial carbon doping. In these eight C-doping systems, only the C atom in the oxygen substitution case gains electrons, 1.14 e, and others present electron losses within 0.5-4.00 e. The results of XPS measurements, DOSs calculations, and Bader charge analyses show that carbon interstitial is the most likely doping type for the C-doped TiO2 NTs.

期刊Journal of Theoretical and Computational Chemistry
出版狀態Published - 1 5月 2013


深入研究「Carbon-doped TiO2 nanotubes: Experimental and computational studies」主題。共同形成了獨特的指紋。