Camera-Based Blood Pressure Estimation via Windkessel Model and Waveform Features

Bing Jhang Wu, Bing Fei Wu*, Chi Po Hsu

*此作品的通信作者

研究成果: Article同行評審

6 引文 斯高帕斯(Scopus)

摘要

Blood pressure (BP) is generally regarded as the vital sign most strongly correlated with human health. However, for decades, BP measurement has involved a cuff, which causes discomfort and even carries a risk of infection, given the current prevalence of COVID-19. Some studies address these problems using remote photoplethysmography (rPPG), which has shown great success in heart rate detection. Nevertheless, these approaches are not robust, and few have been evaluated with a sufficiently large dataset. We propose an rPPG-based BP estimation algorithm that predicts BP by leveraging the Windkessel model and hand-crafted waveform characteristics. A waveform processing procedure is presented for the rPPG signals to obtain a robust waveform template and thus extract BP-related features. Redundant and unstable features are eliminated via Monte Carlo simulation and according to their relationship with latent parameters (LSs) in the Windkessel model. For a comprehensive evaluation, the Chiao Tung BP (CTBP) dataset was constructed. The experiment was conducted over a four-week period of time to evaluate the validity period of the personalization in our system. On all the data, the proposed method outperforms the benchmark algorithms and yields mean absolute errors (MAEs) of 6.48 and 5.06 mmHg for systolic BP (SBP) and diastolic BP (DBP), respectively. The performance achieves a 'B' grade according to the validation protocol from the British Hypertension Society (BHS) for both SBP and DBP.

原文English
文章編號5004113
期刊IEEE Transactions on Instrumentation and Measurement
72
DOIs
出版狀態Published - 2023

指紋

深入研究「Camera-Based Blood Pressure Estimation via Windkessel Model and Waveform Features」主題。共同形成了獨特的指紋。

引用此