TY - JOUR
T1 - BodyTouch
T2 - Investigating Eye-Free, On-Body and Near-Body Touch Interactions with HMDs
AU - Cheng, Wen Wei
AU - Chan, Liwei
N1 - Publisher Copyright:
© 2024 ACM.
PY - 2024/1/12
Y1 - 2024/1/12
N2 - This paper presents a study on the touch precision of an eye-free, body-based interface using on-body and near-body touch methods with and without skin contact. We evaluate user touch accuracy on four different button layouts. These layouts progressively increase the number of buttons between adjacent body joints, resulting in 12, 20, 28, and 36 touch buttons distributed across the body. Our study indicates that the on-body method achieved an accuracy beyond 95% for the 12- and 20-button layouts, whereas the near-body method only for the 12-button layout. Investigating user touch patterns, we applied SVM classifiers, which boost both the on-body and near-body methods to support up to the 28-button layouts by learning individual touch patterns. However, using generalized touch patterns did not significantly improve accuracy for more complex layouts, highlighting considerable differences in individual touch habits. When evaluating user experience metrics such as workload perception, confidence, convenience, and willingness-to-use, users consistently favored the 20-button layout regardless of the touch technique used. Remarkably, the 20-button layout, when applied to on-body touch methods, does not necessitate personal touch patterns, showcasing an optimal balance of practicality, effectiveness, and user experience without the need for trained models. In contrast, the near-body touch targeting the 20-button layout needs a personalized model; otherwise, the 12-button layout offers the best immediate practicality.
AB - This paper presents a study on the touch precision of an eye-free, body-based interface using on-body and near-body touch methods with and without skin contact. We evaluate user touch accuracy on four different button layouts. These layouts progressively increase the number of buttons between adjacent body joints, resulting in 12, 20, 28, and 36 touch buttons distributed across the body. Our study indicates that the on-body method achieved an accuracy beyond 95% for the 12- and 20-button layouts, whereas the near-body method only for the 12-button layout. Investigating user touch patterns, we applied SVM classifiers, which boost both the on-body and near-body methods to support up to the 28-button layouts by learning individual touch patterns. However, using generalized touch patterns did not significantly improve accuracy for more complex layouts, highlighting considerable differences in individual touch habits. When evaluating user experience metrics such as workload perception, confidence, convenience, and willingness-to-use, users consistently favored the 20-button layout regardless of the touch technique used. Remarkably, the 20-button layout, when applied to on-body touch methods, does not necessitate personal touch patterns, showcasing an optimal balance of practicality, effectiveness, and user experience without the need for trained models. In contrast, the near-body touch targeting the 20-button layout needs a personalized model; otherwise, the 12-button layout offers the best immediate practicality.
KW - Body-Based Interface
KW - Head-Mounted Displays
KW - Near-Body Interface
KW - On-Body Interface
KW - Touch Interaction
KW - Virtual Reality
UR - http://www.scopus.com/inward/record.url?scp=85182604834&partnerID=8YFLogxK
U2 - 10.1145/3631426
DO - 10.1145/3631426
M3 - Article
AN - SCOPUS:85182604834
SN - 2474-9567
VL - 7
JO - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
JF - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
IS - 4
M1 - 152
ER -