Bisphenol a exposure, DNA methylation, and asthma in children

Chia Feng Yang, Wilfried J.J. Karmaus, Chen Chang Yang, Mei Lien Chen, I. Jen Wang*

*此作品的通信作者

研究成果: Article同行評審

30 引文 斯高帕斯(Scopus)

摘要

Epidemiological studies have reported the relationship between bisphenol A (BPA) exposure and increased prevalence of asthma, but the mechanisms remain unclear. Here, we investigated whether BPA exposure and DNA methylation related to asthma in children. We collected urinary and blood samples from 228 children (Childhood Environment and Allergic Diseases Study cohort) aged 3 years. Thirty-three candidate genes potentially interacting with BPA exposure were selected from a toxicogenomics database. DNA methylation was measured in 22 blood samples with top-high and bottom-low exposures of BPA. Candidate genes with differential methylation levels were validated by qPCR and promoter associated CpG islands have been investigated. Correlations between the methylation percentage and BPA exposure and asthma were analyzed. According to our findings, MAPK1 showed differential methylation and was further investigated in 228 children. Adjusting for confounders, urinary BPA glucuronide (BPAG) level inversely correlated with MAPK1 promoter methylation (β = −0.539, p = 0.010). For the logistic regression analysis, MAPK1 methylation status was dichotomized into higher methylated and lower methylated groups with cut off continuous variable of median of promoter methylation percentage (50%) while performing the analysis. MAPK1 methylation was lower in children with asthma than in children without asthma (mean ± SD; 69.82 ± 5.88% vs. 79.82 ± 5.56%) (p = 0.001). Mediation analysis suggested that MAPK1 methylation acts as a mediation variable between BPA exposure and asthma. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation. The mechanism of BPA exposure on childhood asthma might, therefore, be through the alteration of MAPK1 methylation.

原文English
文章編號298
期刊International journal of environmental research and public health
17
發行號1
DOIs
出版狀態Published - 1月 2020

指紋

深入研究「Bisphenol a exposure, DNA methylation, and asthma in children」主題。共同形成了獨特的指紋。

引用此