Biometric User Identification by Forearm EMG Analysis

Matus Pleva, Stefan Korecko, Daniel Hladek, Patrick Bours, Markus Hoff Skudal, Yuan Fu Liao

研究成果: Conference contribution同行評審

5 引文 斯高帕斯(Scopus)

摘要

The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.

原文English
主出版物標題Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面607-608
頁數2
ISBN(電子)9781665470506
DOIs
出版狀態Published - 2022
事件2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022 - Taipei, 台灣
持續時間: 6 7月 20228 7月 2022

出版系列

名字Proceedings - 2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022

Conference

Conference2022 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-Taiwan 2022
國家/地區台灣
城市Taipei
期間6/07/228/07/22

指紋

深入研究「Biometric User Identification by Forearm EMG Analysis」主題。共同形成了獨特的指紋。

引用此