TY - JOUR
T1 - Biomechanical evaluation of the effects of implant neckwall thickness and abutment screw size
T2 - A 3D nonlinear finite element analysis
AU - Jeng, Ming Dih
AU - Lin, Yang Sung
AU - Lin, Chun Li
N1 - Publisher Copyright:
© 2020 by the authors.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - In this study, we evaluate the influence of implant neck wall thickness and abutment screw size on alveolar bone and implant component biomechanical responses using nonlinear finite element (FE) analysis. Twelve internal hexagon Morse taper implant-abutment connection FE models with three different implant sizes (diameters 4, 5, and 6 mm), secured with 1.4, 1.6, and 1.8 mm abutment screws to fit with three unilateral implant neck wall thicknesses of 0.45, 0.50, and 1.00 mm, were constructed to perform simulations. Nonlinear contact elements were used to simulate realistic interface fixation within the implant system. A 200 N concentrated force was applied toward the center of a hemispherical load cap and inclined 30ffi relative to the implant axis as the loading condition. The simulation results indicated that increasing the unilateral implant neck wall thickness from 0.45 to 1.00 mm can significantly decrease implant, abutment, and abutment screw stresses and bone strain, decreased to 58%, 48%, 54%, and 70%, respectively. Variations in abutment screw size only significantly influenced abutment screw stress, and the maximum stress dissipation rates were 10% and 29% when the diameter was increased from 1.4 to 1.6 and 1.8 mm, respectively. We conclude that the unilateral implant neck wall thickness is the major design factor for the implant system and implant neck wall thickness in effectively decreasing implant, abutment, and abutment screw stresses and bone strain.
AB - In this study, we evaluate the influence of implant neck wall thickness and abutment screw size on alveolar bone and implant component biomechanical responses using nonlinear finite element (FE) analysis. Twelve internal hexagon Morse taper implant-abutment connection FE models with three different implant sizes (diameters 4, 5, and 6 mm), secured with 1.4, 1.6, and 1.8 mm abutment screws to fit with three unilateral implant neck wall thicknesses of 0.45, 0.50, and 1.00 mm, were constructed to perform simulations. Nonlinear contact elements were used to simulate realistic interface fixation within the implant system. A 200 N concentrated force was applied toward the center of a hemispherical load cap and inclined 30ffi relative to the implant axis as the loading condition. The simulation results indicated that increasing the unilateral implant neck wall thickness from 0.45 to 1.00 mm can significantly decrease implant, abutment, and abutment screw stresses and bone strain, decreased to 58%, 48%, 54%, and 70%, respectively. Variations in abutment screw size only significantly influenced abutment screw stress, and the maximum stress dissipation rates were 10% and 29% when the diameter was increased from 1.4 to 1.6 and 1.8 mm, respectively. We conclude that the unilateral implant neck wall thickness is the major design factor for the implant system and implant neck wall thickness in effectively decreasing implant, abutment, and abutment screw stresses and bone strain.
KW - Abutment screw
KW - Biomechanics
KW - Dental implant
KW - Finite element analysis
KW - Implant neck wall
UR - http://www.scopus.com/inward/record.url?scp=85085709867&partnerID=8YFLogxK
U2 - 10.3390/app10103471
DO - 10.3390/app10103471
M3 - Article
AN - SCOPUS:85085709867
SN - 2076-3417
VL - 10
JO - Applied Sciences (Switzerland)
JF - Applied Sciences (Switzerland)
IS - 10
M1 - 3471
ER -