Biomechanical effect of platform switching in implant dentistry: A three-dimensional finite element analysis

Chih Ling Chang, Chen Sheng Chen, Ming Lun Hsu*

*此作品的通信作者

研究成果: Article同行評審

83 引文 斯高帕斯(Scopus)

摘要

Purpose: The purpose of this study was to analyze and compare the implant-bone interface stresses in anisotropic three-dimensional finite element models of an osseointegrated implant with platform switching and a conventional matching-diameter implant platform and abutment in the posterior maxilla. Materials and Methods: Three-dimensional finite element models were created of a first molar section of the maxilla and embedded with a single endosseous implant (4.1 × 10 mm). One model simulated a 4.1-mm-diameter abutment connection and the other was a narrower 3.4-mm-diameter abutment connection, ie, simulating a platform-switching configuration. A gold alloy crown with 2-mm occlusal thickness was applied over the titanium abutment. Material properties of compact and cancellous bone were modeled as fully orthotropic and transversely isotropic, respectively. Oblique (200-N vertical and 40-N horizontal) occlusal loads were applied and perfect bonding was assumed at all interfaces. Results: Maximum von Mises, compressive, and tensile stresses in compact bone were lower in the platform- switching model than in the conventional model. However, the maximum von Mises stress in cancellous bone was higher in the platform-switching model than in the conventional model. Conclusion: The platform-switching technique reduced the stress concentration in the area of compact bone and shifted it to the area of cancellous bone during oblique loading.

原文English
頁(從 - 到)295-304
頁數10
期刊International Journal of Oral and Maxillofacial Implants
25
發行號2
出版狀態Published - 4月 2010

指紋

深入研究「Biomechanical effect of platform switching in implant dentistry: A three-dimensional finite element analysis」主題。共同形成了獨特的指紋。

引用此