TY - GEN
T1 - Beam Domain Based Fingerprinting Indoor Localization with Multiple Antenna Systems
AU - Yang, Chia Hsing
AU - Lee, Ming Chun
AU - Lin, Chia Hung
AU - Lee, Ta Sung
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Motivated by the emerging internet of things (IoT) applications, wireless systems encounter the challenges of providing accurate indoor localization to massive IoT devices. Although the received signal strength indicator (RSSI)-based fingerprinting can provide accurate localization with low system requirements, it still suffers from multipath and fading effects. To resolve this, we propose a beam domain-based fingerprinting localization that can leverage the spatial feature with multiple antenna systems to improve the localization. Specifically, we consider using the beam domain receive power map (BDRPM), which is an RSSI-based map that captures important features of spatial fingerprints of the environment, for localization. To learn the environmental fingerprints via using BDRPMs and to conduct the localization, we propose a deep-learning approach based on the 2D convolutional neural network and auto-encoder structure. We conduct practical simulations to evaluate our proposed localization approach. The results show that our approach can provide very accurate localization, be resistant to environmental changes, and outperform the reference schemes in the literature.
AB - Motivated by the emerging internet of things (IoT) applications, wireless systems encounter the challenges of providing accurate indoor localization to massive IoT devices. Although the received signal strength indicator (RSSI)-based fingerprinting can provide accurate localization with low system requirements, it still suffers from multipath and fading effects. To resolve this, we propose a beam domain-based fingerprinting localization that can leverage the spatial feature with multiple antenna systems to improve the localization. Specifically, we consider using the beam domain receive power map (BDRPM), which is an RSSI-based map that captures important features of spatial fingerprints of the environment, for localization. To learn the environmental fingerprints via using BDRPMs and to conduct the localization, we propose a deep-learning approach based on the 2D convolutional neural network and auto-encoder structure. We conduct practical simulations to evaluate our proposed localization approach. The results show that our approach can provide very accurate localization, be resistant to environmental changes, and outperform the reference schemes in the literature.
UR - http://www.scopus.com/inward/record.url?scp=85137773790&partnerID=8YFLogxK
U2 - 10.1109/VTC2022-Spring54318.2022.9860507
DO - 10.1109/VTC2022-Spring54318.2022.9860507
M3 - Conference contribution
AN - SCOPUS:85137773790
T3 - IEEE Vehicular Technology Conference
BT - 2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring
Y2 - 19 June 2022 through 22 June 2022
ER -