Background removal of multiview images by learning shape priors

Yu Pao Tsai*, Cheng Hung Ko, Yi Ping Hung, Zen-Chung Shih


研究成果: Article同行評審

24 引文 斯高帕斯(Scopus)


Image-based rendering has been successfully used to display 3-D objects for many applications. A well-known example is the object movie which is an image-based 3-D object composed of a collection of 2-D images taken from many different viewpoints of a 3-D object. In order to integrate image-based 3-D objects into a chosen scene (e.g., a panorama), one has to meet a hard challenge-to efficiently and effectively remove the background from the foreground object. This problem is referred to as multiview images (MVIs) segmentation. Another task requires MVI segmentation is image-based 3-D reconstruction using multiview images. In this paper, we propose a new method for segmenting MVI, which integrates some useful algorithms, including the well-known graph-cut image segmentation and volumetric graph-cut. The main idea is to incorporate the shape prior into the image segmentation process. The shape prior introduced into every image of the MVI is extracted from the 3-D model reconstructed by using the volumetric graph cuts algorithm. Here, the constraint obtained from the discrete medial axis is adopted to improve the reconstruction algorithm. The proposed MVI segmentation process requires only a small amount of user intervention, which is to select a subset of acceptable segmentations of the MVI after the initial segmentation process. According to our experiments, the proposed method can provide not only good MVI segmentation, but also provide acceptable 3-D reconstructed models for certain less-demanding applications.

頁(從 - 到)2607-2616
期刊IEEE Transactions on Image Processing
出版狀態Published - 1 10月 2007


深入研究「Background removal of multiview images by learning shape priors」主題。共同形成了獨特的指紋。