跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Background Extraction Based on Joint Gaussian Conditional Random Fields
Hong Cyuan Wang, Yu Chi Lai, Wen-Huang Cheng, Chin Yun Cheng, Kai Lung Hua
*
*
此作品的通信作者
電子研究所
研究成果
:
Article
›
同行評審
19
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Background Extraction Based on Joint Gaussian Conditional Random Fields」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Background Extraction
100%
Gaussian Conditional Random Fields
100%
Video Sequences
50%
Computer Vision
25%
Optimal Weights
25%
Frame-based
25%
Process Optimization
25%
Low Computational Complexity
25%
Maximum a Posteriori
25%
Random Variables
25%
Extractor
25%
Spatial Coherence
25%
Temporal Coherence
25%
Extraction Algorithm
25%
Algorithm Method
25%
Inter-frame
25%
Novel Joint
25%
Pixel-wise
25%
Intra Frame
25%
Fusion Weight
25%
Augmented Reality Applications
25%
Highway Traffic
25%
Background Objects
25%
Traffic Surveillance Video
25%
Frame Composition
25%
Engineering
Gaussians
100%
Joints (Structural Components)
100%
Random Field
100%
Computervision
33%
Constrains
33%
Computational Cost
33%
Maximum a Posteriori
33%
Random Variable ξ
33%
Extractor
33%
Observables
33%
Augmented Reality
33%
Consecutive Frame
33%
Foreground Complex
33%
Computer Science
Conditional Random Field
100%
Video Sequences
66%
Computer Vision
33%
Computational Cost
33%
Random Variable
33%
surveillance video
33%
Process Optimization
33%
Consecutive Frame
33%
Good Candidate
33%
Background Object
33%
augmented reality application
33%
Relationship Frame
33%