跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Automatic Industry PCB Board DIP Process Defect Detection System Based on Deep Ensemble Self-Adaption Method
Yu-Ting Li
*
, Paul Kuo,
Jiun-In Guo
*
此作品的通信作者
電子研究所
研究成果
:
Article
›
同行評審
49
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Automatic Industry PCB Board DIP Process Defect Detection System Based on Deep Ensemble Self-Adaption Method」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Systems-based
100%
Printed Circuit Board
100%
Self-adaption
100%
Process Defects
100%
Deep Ensemble
100%
Defect Detection System
100%
Detection Performance
66%
Detection Rate
66%
Inspection Interval
66%
False Alarm Rate
66%
YOLOv2
66%
ResNet101
66%
Environmental Variability
33%
Repair Time
33%
Real Tests
33%
Self-service
33%
Semi-automatic
33%
Artificial Intelligence Models
33%
Convolutional Neural Network Model
33%
Automated Optical Inspection
33%
Efficiency Boost
33%
Manual Labeling
33%
Data Collection Methods
33%
Feature Pyramid Network
33%
Foreground Detector
33%
Soldering Defects
33%
Faster R-CNN
33%
Ensemble Convolutional Neural Networks
33%
Professional Guidance
33%
Engineering
Defect Detection
100%
Production Line
100%
Printed Circuit Board
100%
Detection Performance
66%
False Alarm Rate
66%
Network Model
33%
Repair Time
33%
Automated Optical Inspection
33%
Convolutional Neural Network
33%