TY - JOUR
T1 - Automatic Industry PCB Board DIP Process Defect Detection System Based on Deep Ensemble Self-Adaption Method
AU - Li, Yu-Ting
AU - Kuo, Paul
AU - Guo, Jiun-In
PY - 2021/2
Y1 - 2021/2
N2 - A deep ensemble convolutional neural network (CNN) model to inspect printed circuit board (PCB) board dual in-line package (DIP) soldering defects with Hybrid-YOLOv2 (YOLOv2 as a foreground detector and ResNet-101 as a classifier) and Faster RCNN with ResNet-101 and Feature Pyramid Network (FPN) (FRRF) achieved a detection rate of 97.45% and a false alarm rate (FAR) of 20%-30% in the previous study [34]. However, applying the method to other production lines, environmental variations, such as lighting, orientations of the sample feeds, and mechanical deviations, led to the degradation in detection performance. This article proposes an effective self-adaption method that collects "exception data" like the samples with which the Artificial Intelligent (AI) model made mistakes from the automated optical inspection inference edge to the training server, retraining with exceptions on the server and deploying back to the edge. The proposed defect detection system has been verified with real tests that achieved a detection rate of 99.99% with an FAR 20%-30% and less than 15 s of inspection time on a resolution 7296x6000 PCB image. The proposed system has proven capable of shortening inspection and repair time for online operators, where a 33% efficiency boost from the three production lines of the collaborated factory has been reported [6]. The contribution of the proposed retraining mechanism is threefold: 1) because the retraining process directly learns from the exceptions, the model can quickly adapt to the characteristic of each production line, leading to a fast and reliable mass deployment; 2) the proposed retraining mechanism is a necessary self-service for conventional users as it incrementally improves the detection performance without professional guidance or fine-tuning; and 3) the semiautomatic exception data collection method helps to reduce the time-consuming manual labeling during the retraining process.
AB - A deep ensemble convolutional neural network (CNN) model to inspect printed circuit board (PCB) board dual in-line package (DIP) soldering defects with Hybrid-YOLOv2 (YOLOv2 as a foreground detector and ResNet-101 as a classifier) and Faster RCNN with ResNet-101 and Feature Pyramid Network (FPN) (FRRF) achieved a detection rate of 97.45% and a false alarm rate (FAR) of 20%-30% in the previous study [34]. However, applying the method to other production lines, environmental variations, such as lighting, orientations of the sample feeds, and mechanical deviations, led to the degradation in detection performance. This article proposes an effective self-adaption method that collects "exception data" like the samples with which the Artificial Intelligent (AI) model made mistakes from the automated optical inspection inference edge to the training server, retraining with exceptions on the server and deploying back to the edge. The proposed defect detection system has been verified with real tests that achieved a detection rate of 99.99% with an FAR 20%-30% and less than 15 s of inspection time on a resolution 7296x6000 PCB image. The proposed system has proven capable of shortening inspection and repair time for online operators, where a 33% efficiency boost from the three production lines of the collaborated factory has been reported [6]. The contribution of the proposed retraining mechanism is threefold: 1) because the retraining process directly learns from the exceptions, the model can quickly adapt to the characteristic of each production line, leading to a fast and reliable mass deployment; 2) the proposed retraining mechanism is a necessary self-service for conventional users as it incrementally improves the detection performance without professional guidance or fine-tuning; and 3) the semiautomatic exception data collection method helps to reduce the time-consuming manual labeling during the retraining process.
KW - Automated optical inspection (AOI)
KW - defect detection
KW - deep learning
KW - dual in-line package (DIP)
KW - machine learning
KW - Printed Circuit Board Assembly (PCBA)
KW - printed circuit board (PCB)
U2 - 10.1109/TCPMT.2020.3047089
DO - 10.1109/TCPMT.2020.3047089
M3 - Article
SN - 2156-3950
VL - 11
SP - 312
EP - 323
JO - IEEE Transactions on Components, Packaging and Manufacturing Technology
JF - IEEE Transactions on Components, Packaging and Manufacturing Technology
IS - 2
ER -