Automated information mining on multimedia TV news archives

P. S. Lai*, S. S. Cheng, S. Y. Sun, T. Y. Huang, J. M. Su, Y. Y. Xu, Y. H. Chen, S. C. Chuang, C. L. Tseng, C. L. Hsieh, Y. L. Lu, Y. C. Shen, J. R. Chen, J. B. Nie, F. P. Tsai, H. C. Huang, Hsiao-Tien Pao, Hsin Chia Fu


研究成果: Conference article同行評審

3 引文 斯高帕斯(Scopus)


This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.


深入研究「Automated information mining on multimedia TV news archives」主題。共同形成了獨特的指紋。