TY - JOUR
T1 - Aryl hydrocarbon receptor ligands enhance lung immunity through intestinal IKKβ pathways
AU - Tsay, Tzyy Bin
AU - Chen, Pei Hsuan
AU - Chen, Lee Wei
N1 - Publisher Copyright:
© 2019 The Author(s).
PY - 2019/9/5
Y1 - 2019/9/5
N2 - Background: Infection by antibiotic-resistant microorganisms is common in intensive care units and has become a global problem. Here, we determined the effect of aryl hydrocarbon receptor (AhR) stimulation on antibiotics-induced systemic defense impairment and its mechanisms. Methods: C57BL/6 wild-type (WT) mice received combined antibiotics with or without Ahr ligands (tryptophan and indole), or dead Lactobacillus plantarum supplementation. The defense mechanisms against Pseudomonas aeruginosa infection in the lung were examined. Results: Antibiotic treatments decreased the phagocytic activity, physiological activity, and the peroxynitrite production of alveolar macrophage (AMs). It also enhanced P. aeruginosa pneumonia-induced bacterial counts in the lung. Tryptophan and dead L. plantarum supplementation reversed antibiotic-induced intracellular adhesion molecule (ICAM) as well as IL-6 expression, and increased P. aeruginosa pneumonia-induced bacterial counts in the lung and increased phagocytic activity and peroxynitrite production of AMs. Moreover, these treatments reversed the antibiotics-induced reduction of Ahr expression, antibacterial proteins, reactive oxygen species (ROS) production, and NF-κB DNA binding activity of the intestinal mucosa and plasma IL-6 levels. P. aeruginosa counts increased and phagocytic activity of AMs and myeloperoxidase (MPO) activity decreased in intestinal IKKβ depleted mice. Antibiotics, antibiotic with tryptophan feeding, or antibiotic with dead L. plantarum feeding treatments did not change the phagocytic activity and peroxynitrite production of AMs, plasma IL-6 levels, and the expression of Ahr of intestine in intestinal IKKβ depleted mice. Conclusion: Antibiotic treatment impairs lung immune defenses by decreasing Ahr expression in the intestine and peroyxnitrite production of the AMs. Ahr ligands reverses antibiotic-induced lung defense against bacterial infection through intestinal ROS production and NF-κB activation. The gut is critical in maintaining lung defense mechanism through the intestinal IKKβ pathways.
AB - Background: Infection by antibiotic-resistant microorganisms is common in intensive care units and has become a global problem. Here, we determined the effect of aryl hydrocarbon receptor (AhR) stimulation on antibiotics-induced systemic defense impairment and its mechanisms. Methods: C57BL/6 wild-type (WT) mice received combined antibiotics with or without Ahr ligands (tryptophan and indole), or dead Lactobacillus plantarum supplementation. The defense mechanisms against Pseudomonas aeruginosa infection in the lung were examined. Results: Antibiotic treatments decreased the phagocytic activity, physiological activity, and the peroxynitrite production of alveolar macrophage (AMs). It also enhanced P. aeruginosa pneumonia-induced bacterial counts in the lung. Tryptophan and dead L. plantarum supplementation reversed antibiotic-induced intracellular adhesion molecule (ICAM) as well as IL-6 expression, and increased P. aeruginosa pneumonia-induced bacterial counts in the lung and increased phagocytic activity and peroxynitrite production of AMs. Moreover, these treatments reversed the antibiotics-induced reduction of Ahr expression, antibacterial proteins, reactive oxygen species (ROS) production, and NF-κB DNA binding activity of the intestinal mucosa and plasma IL-6 levels. P. aeruginosa counts increased and phagocytic activity of AMs and myeloperoxidase (MPO) activity decreased in intestinal IKKβ depleted mice. Antibiotics, antibiotic with tryptophan feeding, or antibiotic with dead L. plantarum feeding treatments did not change the phagocytic activity and peroxynitrite production of AMs, plasma IL-6 levels, and the expression of Ahr of intestine in intestinal IKKβ depleted mice. Conclusion: Antibiotic treatment impairs lung immune defenses by decreasing Ahr expression in the intestine and peroyxnitrite production of the AMs. Ahr ligands reverses antibiotic-induced lung defense against bacterial infection through intestinal ROS production and NF-κB activation. The gut is critical in maintaining lung defense mechanism through the intestinal IKKβ pathways.
KW - Alveolar macrophage
KW - NF-κB
KW - Peroxynitrite
KW - Reactive oxygen species
KW - Tryptophan
UR - http://www.scopus.com/inward/record.url?scp=85071742740&partnerID=8YFLogxK
U2 - 10.1186/s12967-019-2043-8
DO - 10.1186/s12967-019-2043-8
M3 - Article
C2 - 31488203
AN - SCOPUS:85071742740
SN - 1479-5876
VL - 17
JO - Journal of Translational Medicine
JF - Journal of Translational Medicine
IS - 1
M1 - 304
ER -