@inproceedings{3b63fbd4aa9d4c66b5d6147e14e30683,
title = "Applying neural networks to detect the failures of turbines in thermal power facilities",
abstract = "Due to the growing demand on electricity, how to improve the efficiency of equipment has become one of the critical issues in a thermal power plant. Related works reported that efficiency and availability depend heavily on high reliability and maintainability. Recently, the concept of e-maintenance has been introduced to reduce the cost of maintenance. In e-maintenance systems, the intelligent fault detection system plays a crucial role for identifying failures. Machine learning techniques are at the core of such intelligent systems and can greatly influence their performance. Applying these techniques to fault detection makes it possible to shorten shutdown maintenance and thus increase the capacity utilization rates of equipment. Therefore, this work applies Back-propagation Neural Networks (BPN) to analyze the failures of turbines in thermal power facilities. Finally, a real case from a thermal power plant is provided to evaluate the effectiveness.",
keywords = "Fault detection, Feature selection, Machine learning, Maintenance, Neural networks",
author = "Chen, {Kai Ying} and Chen, {Long Sheng} and Mu-Chen Chen and Lee, {Chia Lung}",
year = "2009",
month = dec,
day = "1",
doi = "10.1109/IEEM.2009.5373231",
language = "American English",
isbn = "9781424448708",
series = "IEEM 2009 - IEEE International Conference on Industrial Engineering and Engineering Management",
publisher = "IEEE",
pages = "708--711",
booktitle = "IEEM 2009 - IEEE International Conference on Industrial Engineering and Engineering Management",
note = "IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2009 ; Conference date: 08-12-2009 Through 11-12-2009",
}