Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images

Jia Chun Sheng*, Yi Sheng Liao, Chun Rong Huang

*此作品的通信作者

研究成果: Conference contribution同行評審

1 引文 斯高帕斯(Scopus)

摘要

Instance segmentation can be applied for the discrimination and diagnosis of cancer cells in pathology images. Accurate segmentation of each pathological cell in the pathology images can improve the efficiency of clinical diagnosis. In this paper, we aim to evaluate the state-of-the-art transformer-based instance segmentation method, masked-attention mask transformer (Mask2Former)[1], on pathology datasets. With the pretrained model of Mask2Former on the natural image instance segmentation dataset, we show that Mask2Former can be adaptive to small pathological datasets and achieve comparable or even better instance segmentation performance compared with the state-of-the-art task-specific pathology image instance segmentation methods.

原文English
主出版物標題Proceedings - 2023 6th International Symposium on Computer, Consumer and Control, IS3C 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面342-345
頁數4
ISBN(電子)9798350301953
DOIs
出版狀態Published - 2023
事件6th International Symposium on Computer, Consumer and Control, IS3C 2023 - Taichung City, Taiwan
持續時間: 30 6月 20233 7月 2023

出版系列

名字Proceedings - 2023 6th International Symposium on Computer, Consumer and Control, IS3C 2023

Conference

Conference6th International Symposium on Computer, Consumer and Control, IS3C 2023
國家/地區Taiwan
城市Taichung City
期間30/06/233/07/23

指紋

深入研究「Apply Masked-attention Mask Transformer to Instance Segmentation in Pathology Images」主題。共同形成了獨特的指紋。

引用此