Application of Wafer Defect Pattern Classification Model in the Semiconductor Industry

Chin Wei Lee, Daniel Hládek, Matúš Pleva, Yuan Fu Liao, Ming Hsiang Su

研究成果: Conference contribution同行評審

摘要

Deep learning (DL) methods are widely employed in the semiconductor manufacturing process to enhance pattern recognition and classification accuracy, specifically for addressing defect patterns. However, the classification performance of the current models is hindered by the imbalanced distribution of defect data within the test dataset. To tackle this issue, this study presents a feature extraction approach utilizing data transformation, and ensemble learning techniques aiming to enhance the model's classification performance. The primary objective of this study is to mitigate selection and imbalance problems in the dataset through random sampling and assigning distinct weights to individual classifiers. The results demonstrate that the proposed method achieves an impressive accuracy rate of 95.09%, thus substantiating its efficacy in improving the robustness of both the classification model and wafer classification.

原文English
主出版物標題2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2173-2177
頁數5
ISBN(電子)9798350300673
DOIs
出版狀態Published - 2023
事件2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023 - Taipei, 台灣
持續時間: 31 10月 20233 11月 2023

出版系列

名字2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023

Conference

Conference2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2023
國家/地區台灣
城市Taipei
期間31/10/233/11/23

指紋

深入研究「Application of Wafer Defect Pattern Classification Model in the Semiconductor Industry」主題。共同形成了獨特的指紋。

引用此