Application of improved genetic algorithm on IIR filter optimization

Ching Hung Lee*, Yueh Chang Tsai, Chih Min Lin

*此作品的通信作者

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

This paper presents an improved GA which modified the GA based on allele gene adaptive mutation of mutation and crossover operation. There are three modified strategies to improve the performance of GA, elitist strategy is adopted to speed up convergence rate; the crossover operation is modified for effective searching; and the allele gene adaptive mutation exploits individuals' allele gene in the population to maintain an appropriate level of diversity. Finally, simulation results of test function of optimization problems and IIR filter design are shown to illustrate the effectiveness and performance of the proposed improved GA.

原文English
主出版物標題Proceedings - International Conference on Machine Learning and Cybernetics
發行者IEEE Computer Society
頁面1436-1441
頁數6
ISBN(電子)9781479902576
DOIs
出版狀態Published - 2013
事件12th International Conference on Machine Learning and Cybernetics, ICMLC 2013 - Tianjin, China
持續時間: 14 7月 201317 7月 2013

出版系列

名字Proceedings - International Conference on Machine Learning and Cybernetics
3
ISSN(列印)2160-133X
ISSN(電子)2160-1348

Conference

Conference12th International Conference on Machine Learning and Cybernetics, ICMLC 2013
國家/地區China
城市Tianjin
期間14/07/1317/07/13

指紋

深入研究「Application of improved genetic algorithm on IIR filter optimization」主題。共同形成了獨特的指紋。

引用此