Analytics-statistics mixed training and its fitness to semisupervised manufacturing

Parag Parashar, Chun Han Chen, Chandni Akbar, Sze Ming Fu, Tejender S. Rawat, Sparsh Pratik, Rajat Butola, Shih Han Chen, Shih-Chun Lin*

*此作品的通信作者

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

While there have been many studies using machine learning (ML) algorithms to predict process outcomes and device performance in semiconductor manufacturing, the extensively developed technology computer-aided design (TCAD) physical models should play a more significant role in conjunction with ML. While TCAD models have been effective in predicting the trends of experiments, a machine learning statistical model is more capable of predicting the anomalous effects that can be dependent on the chambers, machines, fabrication environment, and specific layouts. In this paper, we use an analytics-statistics mixed training (ASMT) approach using TCAD. Under this method, the TCAD models are incorporated into the machine learning training procedure. The mixed dataset with the experimental and TCAD results improved the prediction in terms of accuracy. With the application of ASMT to the BOSCH process, we show that the mean square error (MSE) can be effectively decreased when the analytics-statistics mixed training (ASMT) scheme is used instead of the classic neural network (NN) used in the baseline study. In this method, statistical induction and analytical deduction can be combined to increase the prediction accuracy of future intelligent semiconductor manufacturing.

原文English
文章編號e0220607
期刊PLoS ONE
14
發行號8
DOIs
出版狀態Published - 13 8月 2019

指紋

深入研究「Analytics-statistics mixed training and its fitness to semisupervised manufacturing」主題。共同形成了獨特的指紋。

引用此