An intelligent system for automated binary knowledge document classification and content analysis

Tzu An Chiang, Chun Yi Wu, Charles V. Trappey, Amy J.C. Trappey

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

Many companies rely on patent engineers to search patent documents and offer recommendations and advice to R&D engineers. Given the increasing number of patent documents filed each year, new means to effectively and efficiently identify and manage technology specific patent documents are required. This research applies a back-propagation artificial neural network (BPANN), a hierarchical ontology technique, and a normalized term frequency (NTF) method to develop an intelligent system for binary knowledge document classification and content analysis. The intelligent system minimizes inappropriate patent document classification and reduces the effort required to search and screen patents for analysis. Finally, this paper uses the design of light emitting diode (LED) lamps as a case study to illustrate and verify the efficiency of automated binary knowledge document classification and content analysis.

原文English
頁(從 - 到)1991-2008
頁數18
期刊Journal of Universal Computer Science
17
發行號14
DOIs
出版狀態Published - 2011

指紋

深入研究「An intelligent system for automated binary knowledge document classification and content analysis」主題。共同形成了獨特的指紋。

引用此