An Improved Meta Learning Approach for Optimizing Recipe Parameters for Semiconductor Processes

Zhen Yin Annie Chen, Chun Cheng Lin, Ke Wen Lu, Hui Hsin Chin, Der Jiunn Deng*

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

It has been challenging to find the optimal recipe parameters for semiconductor processes to find a balance between budgets and computing efficiency. Therefore, this study focuses on finding the optimal recipe parameters of a semiconductor process using an improves meta Bayesian optimization (MetaBO) method, which can be trained with extremely few samples and historical data so as to quickly find the optimal process parameter combinations for the product. Experimental results show that the improved MetaBO significantly improves overall quality and efficiency in both model training and new task evaluation.

原文English
主出版物標題IECON 2023 - 49th Annual Conference of the IEEE Industrial Electronics Society
發行者IEEE Computer Society
ISBN(電子)9798350331820
DOIs
出版狀態Published - 2023
事件49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023 - Singapore, 新加坡
持續時間: 16 10月 202319 10月 2023

出版系列

名字IECON Proceedings (Industrial Electronics Conference)
ISSN(列印)2162-4704
ISSN(電子)2577-1647

Conference

Conference49th Annual Conference of the IEEE Industrial Electronics Society, IECON 2023
國家/地區新加坡
城市Singapore
期間16/10/2319/10/23

指紋

深入研究「An Improved Meta Learning Approach for Optimizing Recipe Parameters for Semiconductor Processes」主題。共同形成了獨特的指紋。

引用此