An exact subexponential-time lattice algorithm for Asian options

Tian-Shyr Dai, Yuh-Dauh Lyuu

研究成果: Article同行評審


Asian options are popular financial derivative securities. Unfortunately, no exact pricing formulas exist for their price under continuous-time models. Asian options can also be priced on the lattice, which is a discretized version of the continuous-time model. But only exponential-time algorithms exist if the options are priced on the lattice without approximations. Although efficient approximation methods are available, they lack accuracy guarantees in general. This paper proposes a novel lattice structure for pricing Asian options. The resulting pricing algorithm is exact (i.e., without approximations), converges to the value under the continuous-time model, and runs in subexponential time. This is the first exact, convergent lattice algorithm to break the long-standing exponential-time barrier.
原文American English
頁(從 - 到)23-39
期刊Acta Informatica
出版狀態Published - 4月 2007


深入研究「An exact subexponential-time lattice algorithm for Asian options」主題。共同形成了獨特的指紋。