TY - GEN
T1 - An efficient 18-band quasi-ANSI 1/3-octave filter bank using re-sampling method for digital hearing aids
AU - Yang, Cheng Yen
AU - Liu, Chih-Wei
AU - Jou, Shyh-Jye
PY - 2014
Y1 - 2014
N2 - This paper presents the multirate and re-sampling techniques to realize a low-delay, 18-band quasi-ANSI filter bank for digital hearing aids, which not only achieves a rather low computation complexity without a significant increase in the latency, but reduces greatly the total computation complexity for sub-band signal processing followed by the filter bank, such as noise reduction as well as wide dynamic range compression (WDRC). Researches done in the literature all focused on how to reduce the computation complexity of the filter bank. In particular, with the efficient multirate and interpolated FIR (IFIR) approaches for a 10-ms, 18-band quasi-ANSI filter bank, approximately 93% of the multiplications are saved, compared that with a straightforward parallel FIR filters architecture. However, they did not consider the computation complexity of the sub-band signal processing. In this paper, we first investigate realizing the FIR filter bank efficiently by using the multirate re-sampling techniques. To reduce the complexity, the optimized re-sampling factor for each filter band is explored carefully. Then, with the resampling technique, an efficient multirate quasi-ANSI FIR filter bank architecture is proposed. Compare to the state-of-the-art quasi-ANSI filter bank, approximately 17.7% of multiplicative complexity is reduced further and, up to 25% of the total computation complexity for sub-band signal processing followed by the filter bank is saved, but with only a slight increase in latency, i.e. 13.6 ms.
AB - This paper presents the multirate and re-sampling techniques to realize a low-delay, 18-band quasi-ANSI filter bank for digital hearing aids, which not only achieves a rather low computation complexity without a significant increase in the latency, but reduces greatly the total computation complexity for sub-band signal processing followed by the filter bank, such as noise reduction as well as wide dynamic range compression (WDRC). Researches done in the literature all focused on how to reduce the computation complexity of the filter bank. In particular, with the efficient multirate and interpolated FIR (IFIR) approaches for a 10-ms, 18-band quasi-ANSI filter bank, approximately 93% of the multiplications are saved, compared that with a straightforward parallel FIR filters architecture. However, they did not consider the computation complexity of the sub-band signal processing. In this paper, we first investigate realizing the FIR filter bank efficiently by using the multirate re-sampling techniques. To reduce the complexity, the optimized re-sampling factor for each filter band is explored carefully. Then, with the resampling technique, an efficient multirate quasi-ANSI FIR filter bank architecture is proposed. Compare to the state-of-the-art quasi-ANSI filter bank, approximately 17.7% of multiplicative complexity is reduced further and, up to 25% of the total computation complexity for sub-band signal processing followed by the filter bank is saved, but with only a slight increase in latency, i.e. 13.6 ms.
KW - ANSI S1.11
KW - Filter bank
KW - hearing-aids
KW - real-time application
UR - http://www.scopus.com/inward/record.url?scp=84905280453&partnerID=8YFLogxK
U2 - 10.1109/ICASSP.2014.6854078
DO - 10.1109/ICASSP.2014.6854078
M3 - Conference contribution
AN - SCOPUS:84905280453
SN - 9781479928927
T3 - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
SP - 2639
EP - 2643
BT - 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
Y2 - 4 May 2014 through 9 May 2014
ER -