跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
An Effective Tuberculosis Detection System Based on Improved Faster R-CNN with RoI Align Method
Wei Bang Ma
*
, Yang Yang,
Wai Chi Fang
*
此作品的通信作者
電子研究所
研究成果
:
Conference contribution
›
同行評審
總覽
指紋
指紋
深入研究「An Effective Tuberculosis Detection System Based on Improved Faster R-CNN with RoI Align Method」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Systems-based
100%
Detection System
100%
Region of Interest
100%
Tuberculosis
100%
Tuberculosis Diagnosis
100%
Improved Faster R-CNN
100%
X-ray Images
60%
High Efficiency
20%
Effective Approach
20%
Extracting Features
20%
Computer-aided
20%
Highly Accurate
20%
Disease Symptoms
20%
Faster R-CNN Model
20%
Bounding Box
20%
Public Health Risk
20%
Model Use
20%
Survival Rate
20%
Early Diagnosis
20%
Deep Learning Model
20%
Tuberculosis Treatment
20%
Annotation Information
20%
Faster R-CNN
20%
Bounding Box Annotation
20%
Region Proposal Network
20%
Anchor Box
20%
Tuberculosis Prevention
20%
Json
20%
X-ray Detect
20%
Computer Science
Convolutional Neural Network
100%
Annotation
33%
Effective Approach
33%
Deep Learning Model
33%
Json File
33%
Anchor Box
33%
Biochemistry, Genetics and Molecular Biology
X Ray
100%
Survival Rate
33%