An AdaBoost object detection design for heterogeneous computing with OpenCL

Bing Yang Cheng, Jui Sheng Lee, Jiun-In  Guo

研究成果: Conference contribution同行評審

1 引文 斯高帕斯(Scopus)

摘要

AdaBoost classification with Haar-like features [1] is commonly adopted for object detection. Feature calculation in AdaBoost algorithm is the most time-consuming part, which occupies over 98% of the computation and cannot reach realtime processing with CPU computing only. In this paper we propose an object detection design for heterogeneous computing with OpenCL. By adopting the techniques of scale parallelizing, stage partitioning, and dynamic stage scheduling on AdaBoost algorithm, the proposed design solves load-unbalanced problems when realize in multicore CPU and GPU platform. The proposed object detection design achieves 32.5 fps at D1 resolution on an AMD A10-7850K processor.

原文English
主出版物標題2015 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015
發行者Institute of Electrical and Electronics Engineers Inc.
頁面286-287
頁數2
ISBN(電子)9781479987443
DOIs
出版狀態Published - 20 8月 2015
事件2nd IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015 - Taipei, Taiwan
持續時間: 6 6月 20158 6月 2015

出版系列

名字2015 IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015

Conference

Conference2nd IEEE International Conference on Consumer Electronics - Taiwan, ICCE-TW 2015
國家/地區Taiwan
城市Taipei
期間6/06/158/06/15

指紋

深入研究「An AdaBoost object detection design for heterogeneous computing with OpenCL」主題。共同形成了獨特的指紋。

引用此