All Attention U-NET for Semantic Segmentation of Intracranial Hemorrhages In Head CT Images

Chia Shuo Chang, Tian Sheuan Chang, Jiun Lin Yan, Li Ko

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

Intracranial hemorrhages in head CT scans serve as a first line tool to help specialists diagnose different types. However, their types have diverse shapes in the same type but similar confusing shape, size and location between types. To solve this problem, this paper proposes an all attention U-Net. It uses channel attentions in the U-Net encoder side to enhance class specific feature extraction, and space and channel attentions in the U-Net decoder side for more accurate shape extraction and type classification. The simulation results show up to a 31.8% improvement compared to baseline, ResNet50 + U-Net, and better performance than in cases with limited attention.

原文English
主出版物標題BioCAS 2022 - IEEE Biomedical Circuits and Systems Conference
主出版物子標題Intelligent Biomedical Systems for a Better Future, Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
頁面600-604
頁數5
ISBN(電子)9781665469173
DOIs
出版狀態Published - 2022
事件2022 IEEE Biomedical Circuits and Systems Conference, BioCAS 2022 - Taipei, 台灣
持續時間: 13 10月 202215 10月 2022

出版系列

名字BioCAS 2022 - IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Systems for a Better Future, Proceedings

Conference

Conference2022 IEEE Biomedical Circuits and Systems Conference, BioCAS 2022
國家/地區台灣
城市Taipei
期間13/10/2215/10/22

指紋

深入研究「All Attention U-NET for Semantic Segmentation of Intracranial Hemorrhages In Head CT Images」主題。共同形成了獨特的指紋。

引用此