跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Adversarial Data Augmentation Improves Unsupervised Machine Learning
Chia-Yi Hsu, Pin-Yu Chen,
Chia-Mu Yu
, Songtao Lu, Sijia Liu
資訊管理與財務金融學系
研究成果
:
Paper
›
同行評審
總覽
指紋
指紋
深入研究「Adversarial Data Augmentation Improves Unsupervised Machine Learning」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Adversarial Data Augmentation
100%
Adversarial Examples
100%
Unsupervised Machine Learning
100%
Data Augmentation
40%
Mutual Information
20%
Supervised Learning
20%
Learning Task
20%
Similarity Measure
20%
Information Theory
20%
Learning Classifiers
20%
Efficient Generation
20%
Data Reconstruction
20%
Ground Truth Data
20%
Convergence Guarantee
20%
Min-max Algorithm
20%
Unsupervised Model
20%
Machine Learning Models
20%
Representation Learning
20%
Model Retraining
20%
Contrastive Learning
20%
Provable Convergence
20%
Neural Estimator
20%
Data Label
20%
Computer Science
Data Augmentation
100%
Adversarial Example
100%
Machine Learning
100%
Learning System
100%
Mutual Information
20%
Supervised Learning
20%
Exploit Framework
20%
Representation Learning
20%
Contrastive Learning
20%
Chemical Engineering
Learning System
100%
Supervised Learning
50%