TY - GEN
T1 - Adaptive Unknown Object Rearrangement Using Low-Cost Tabletop Robot
AU - Chai, Chun Yu
AU - Peng, Wen Hsiao
AU - Tsao, Shiao Li
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/5
Y1 - 2020/5
N2 - Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.
AB - Studies on object rearrangement planning typically consider known objects. Some learning-based methods can predict the movement of an unknown object after single-step interaction, but require intermediate targets, which are generated manually, to achieve the rearrangement task. In this work, we propose a framework for unknown object rearrangement. Our system first models an object through a small-amount of identification actions and adjust the model parameters during task execution. We implement the proposed framework based on a low-cost tabletop robot (under 180 USD) to demonstrate the advantages of using a physics engine to assist action prediction. Experimental results reveal that after running our adaptive learning procedure, the robot can successfully arrange a novel object using an average of five discrete pushes on our tabletop environment and satisfy a precise 3.5 cm translation and 5° rotation criterion.
UR - http://www.scopus.com/inward/record.url?scp=85092698274&partnerID=8YFLogxK
U2 - 10.1109/ICRA40945.2020.9197356
DO - 10.1109/ICRA40945.2020.9197356
M3 - Conference contribution
AN - SCOPUS:85092698274
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 2372
EP - 2378
BT - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Y2 - 31 May 2020 through 31 August 2020
ER -