Ab initio chemical kinetic study on Cl + ClO and related reverse processes

Z. F. Xu, Ming-Chang Lin

研究成果: Article同行評審

5 引文 斯高帕斯(Scopus)

摘要

The reaction of ClO with Cl and its related reverse processes have been studied theoretically by ab initio quantum chemical and statistical mechanical calculations. The geometric parameters of the reactants, products, and transition states are optimized by both UMPW1PW91 and unrestricted coupled-cluster single and double excitation (UCCSD) methods with the 6-311+G(3df) basis set. The potential energy surface has been further refined (with triple excitations, T) at the UCCSD(T)/6-311+G(3df) level of theory. The results show that Cl2 and O (3P) can be produced by chlorine atom abstraction via a tight transition state, while ClOCl ( 1A1) and ClClO (1A′) can be formed by barrierless association processes with exothermicities of 31.8 and 16.0 kcal/mol, respectively. In principle the O (1D) atom can be generated with a large endothermicity of 56.9 kcal/mol; on the other hand, its barrierless reaction with Cl2 can readily form ClClO ( 1A′), which fragments rapidly to give ClO + Cl. The rate constants of both forward and reverse processes have been predicted at 150-2000 K by the microcanonical variational transition state theory (VTST)/Rice- Ramsperger-Kassel-Marcus (RRKM) theory. The predicted rate constants are in good agreement with available experimental data within reported errors.

原文English
頁(從 - 到)11477-11482
頁數6
期刊Journal of Physical Chemistry A
114
發行號43
DOIs
出版狀態Published - 4 11月 2010

指紋

深入研究「Ab initio chemical kinetic study on Cl + ClO and related reverse processes」主題。共同形成了獨特的指紋。

引用此