TY - JOUR
T1 - A statistical predictive model consistent within a 5-year follow-up period for patients with acute heart failure
AU - Guo, Chao Yu
AU - Chan, Chien Hui
AU - Chou, Yu Chin
AU - Sung, Shih Hsien
AU - Cheng, Hao Min
N1 - Publisher Copyright:
Copyright © 2020, the Chinese Medical Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
PY - 2020/11
Y1 - 2020/11
N2 - Background: Acute heart failure (AHF) is a major and rapidly growing health problem responsible for millions of hospitalizations annually. Due to a high proportion of in-hospital mortality and postdischarge rehospitalization and mortality, a prompt strategy for risk stratification and subsequently tailored therapy is desirable to help improve clinical outcomes. The AHEAD (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus) and AHEAD-U (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus, U: uric acid) are popular prognostic scoring systems. However, only a specific follow-up period is considered in these systems, and whether their predictive capability is still accurate in a significantly shorter or longer follow-up period is not known. Methods: In this research, we adapted extensive statistical approaches based on the Cox model to explore consistent risk factors in various follow-up durations. Results showed that six factors, namely, hemoglobin level, age, sodium level, blood urea nitrogen level, atrial fibrillation, and high-density lipoprotein level could be used to establish a new prognostic model, which was referred to as HANBAH. For a simple clinical application, the HANBAH scoring system, with scores from 0 to 6, was developed using several statistical models. Results: Based on an evaluation using the conventional statistical approaches, such as the Akaike information criterion, concordance statistic, and Cox area under the curve, the HANBAH scoring system consistently outperformed other strategies in predicting short- and long-term mortality. Notably, an independent replication study also revealed similar results. In addition, a modern machine learning technique using the support vector machine confirmed its superior performance. Conclusion: The use of the HANBAH scoring system, which is a clinically friendly tool, was proposed, and its efficacy in predicting the mortality rates of patients with AHF regardless of the follow-up duration was independently validated.
AB - Background: Acute heart failure (AHF) is a major and rapidly growing health problem responsible for millions of hospitalizations annually. Due to a high proportion of in-hospital mortality and postdischarge rehospitalization and mortality, a prompt strategy for risk stratification and subsequently tailored therapy is desirable to help improve clinical outcomes. The AHEAD (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus) and AHEAD-U (A: atrial fibrillation; H: hemoglobin; E: elderly; A: abnormal renal parameters; D: diabetes mellitus, U: uric acid) are popular prognostic scoring systems. However, only a specific follow-up period is considered in these systems, and whether their predictive capability is still accurate in a significantly shorter or longer follow-up period is not known. Methods: In this research, we adapted extensive statistical approaches based on the Cox model to explore consistent risk factors in various follow-up durations. Results showed that six factors, namely, hemoglobin level, age, sodium level, blood urea nitrogen level, atrial fibrillation, and high-density lipoprotein level could be used to establish a new prognostic model, which was referred to as HANBAH. For a simple clinical application, the HANBAH scoring system, with scores from 0 to 6, was developed using several statistical models. Results: Based on an evaluation using the conventional statistical approaches, such as the Akaike information criterion, concordance statistic, and Cox area under the curve, the HANBAH scoring system consistently outperformed other strategies in predicting short- and long-term mortality. Notably, an independent replication study also revealed similar results. In addition, a modern machine learning technique using the support vector machine confirmed its superior performance. Conclusion: The use of the HANBAH scoring system, which is a clinically friendly tool, was proposed, and its efficacy in predicting the mortality rates of patients with AHF regardless of the follow-up duration was independently validated.
KW - Acute heart failure
KW - AHEAD
KW - AHEAD-U
KW - Prognosis
KW - Proportional hazards model
UR - http://www.scopus.com/inward/record.url?scp=85090579943&partnerID=8YFLogxK
U2 - 10.1097/JCMA.0000000000000403
DO - 10.1097/JCMA.0000000000000403
M3 - Article
C2 - 32773590
AN - SCOPUS:85090579943
SN - 1726-4901
VL - 83
SP - 1008
EP - 1013
JO - Journal of the Chinese Medical Association
JF - Journal of the Chinese Medical Association
IS - 11
ER -