跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
A reinforcement neuro-fuzzy combiner for multiobjective control
Chin Teng Lin
*
,
I. Fang Chung
*
此作品的通信作者
生物醫學資訊研究所
研究成果
:
Article
›
同行評審
18
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「A reinforcement neuro-fuzzy combiner for multiobjective control」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Fuzzy Neural Network
100%
Combiner
100%
Multi-objective Control
100%
Low-level Controller
40%
Reinforcement Learning
30%
Learnability
20%
Learning Scheme
20%
Proper Action
20%
Controller
10%
Input-output
10%
Proposed Architecture
10%
Trial-and-error
10%
Supervised Learning
10%
Training Data
10%
Fuzzy Controller
10%
Feedback Information
10%
Soft Switching
10%
Multiobjective Control Problem
10%
Teaching Information
10%
Reinforcement Feedback
10%
Fuzzy Combination
10%
Computer Science
neuro-fuzzy
100%
Multiobjective
100%
Controller Level
40%
Reinforcement Learning
30%
Learning Scheme
20%
Training Data
10%
Input/Output
10%
Computer Simulation
10%
Supervised Learning
10%
Priori Knowledge
10%
Feedback Information
10%
Determine Level
10%
Engineering
Combiner
100%
Reinforcement Learning
30%
Learning Scheme
20%
Illustrates
10%
Applicability
10%
Fuzzy Controller
10%
Feedback Information
10%
Priori Knowledge
10%
Chemical Engineering
Reinforcement Learning
100%
Supervised Learning
33%