A Reconfigurable In-SRAM Computing Architecture for DCNN Applications

Yu Hsien Lin, Chi Liu, Chia Lin Hu, Kang Yu Chang, Jia Yin Chen, Shyh Jye Jou

研究成果: Conference contribution同行評審

5 引文 斯高帕斯(Scopus)

摘要

A methodology for Artificial Intelligence (AI) edge Deep Learning Neural Network (DNN) hardware design to increase the flexibility of each layer is emergent required. In order to support different DNN layers, a reconfigurable Universal Computation Element (UCE-R) is proposed. The UCE-R has its own controller and several UCE-Rs can be integrated to form a Reconfigurable UDNN (UDNN-R) engine for use in different kinds of AI edge applications. The design of UCE-R is implemented by using TSMC CMOS 28 um process. An UDNN-R is integrated for a Mobile-Net application.

原文English
主出版物標題2021 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2021 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781665419154
DOIs
出版狀態Published - 19 4月 2021
事件2021 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2021 - Hsinchu, 台灣
持續時間: 19 4月 202122 4月 2021

出版系列

名字2021 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2021 - Proceedings

Conference

Conference2021 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2021
國家/地區台灣
城市Hsinchu
期間19/04/2122/04/21

指紋

深入研究「A Reconfigurable In-SRAM Computing Architecture for DCNN Applications」主題。共同形成了獨特的指紋。

引用此